3.287 \(\int \frac{1}{x^4 (1+2 x^4+x^8)} \, dx\)

Optimal. Leaf size=106 \[ \frac{1}{4 x^3 \left (x^4+1\right )}-\frac{7}{12 x^3}+\frac{7 \log \left (x^2-\sqrt{2} x+1\right )}{16 \sqrt{2}}-\frac{7 \log \left (x^2+\sqrt{2} x+1\right )}{16 \sqrt{2}}+\frac{7 \tan ^{-1}\left (1-\sqrt{2} x\right )}{8 \sqrt{2}}-\frac{7 \tan ^{-1}\left (\sqrt{2} x+1\right )}{8 \sqrt{2}} \]

[Out]

-7/(12*x^3) + 1/(4*x^3*(1 + x^4)) + (7*ArcTan[1 - Sqrt[2]*x])/(8*Sqrt[2]) - (7*ArcTan[1 + Sqrt[2]*x])/(8*Sqrt[
2]) + (7*Log[1 - Sqrt[2]*x + x^2])/(16*Sqrt[2]) - (7*Log[1 + Sqrt[2]*x + x^2])/(16*Sqrt[2])

________________________________________________________________________________________

Rubi [A]  time = 0.0521337, antiderivative size = 106, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 9, integrand size = 16, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.562, Rules used = {28, 290, 325, 211, 1165, 628, 1162, 617, 204} \[ \frac{1}{4 x^3 \left (x^4+1\right )}-\frac{7}{12 x^3}+\frac{7 \log \left (x^2-\sqrt{2} x+1\right )}{16 \sqrt{2}}-\frac{7 \log \left (x^2+\sqrt{2} x+1\right )}{16 \sqrt{2}}+\frac{7 \tan ^{-1}\left (1-\sqrt{2} x\right )}{8 \sqrt{2}}-\frac{7 \tan ^{-1}\left (\sqrt{2} x+1\right )}{8 \sqrt{2}} \]

Antiderivative was successfully verified.

[In]

Int[1/(x^4*(1 + 2*x^4 + x^8)),x]

[Out]

-7/(12*x^3) + 1/(4*x^3*(1 + x^4)) + (7*ArcTan[1 - Sqrt[2]*x])/(8*Sqrt[2]) - (7*ArcTan[1 + Sqrt[2]*x])/(8*Sqrt[
2]) + (7*Log[1 - Sqrt[2]*x + x^2])/(16*Sqrt[2]) - (7*Log[1 + Sqrt[2]*x + x^2])/(16*Sqrt[2])

Rule 28

Int[(u_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_.), x_Symbol] :> Dist[1/c^p, Int[u*(b/2 + c*x^n)^(2*
p), x], x] /; FreeQ[{a, b, c, n}, x] && EqQ[n2, 2*n] && EqQ[b^2 - 4*a*c, 0] && IntegerQ[p]

Rule 290

Int[((c_.)*(x_))^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> -Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(
a*c*n*(p + 1)), x] + Dist[(m + n*(p + 1) + 1)/(a*n*(p + 1)), Int[(c*x)^m*(a + b*x^n)^(p + 1), x], x] /; FreeQ[
{a, b, c, m}, x] && IGtQ[n, 0] && LtQ[p, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 325

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[((c*x)^(m + 1)*(a + b*x^n)^(p + 1))/(a*
c*(m + 1)), x] - Dist[(b*(m + n*(p + 1) + 1))/(a*c^n*(m + 1)), Int[(c*x)^(m + n)*(a + b*x^n)^p, x], x] /; Free
Q[{a, b, c, p}, x] && IGtQ[n, 0] && LtQ[m, -1] && IntBinomialQ[a, b, c, n, m, p, x]

Rule 211

Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[a/b, 2]], s = Denominator[Rt[a/b, 2]]}, Di
st[1/(2*r), Int[(r - s*x^2)/(a + b*x^4), x], x] + Dist[1/(2*r), Int[(r + s*x^2)/(a + b*x^4), x], x]] /; FreeQ[
{a, b}, x] && (GtQ[a/b, 0] || (PosQ[a/b] && AtomQ[SplitProduct[SumBaseQ, a]] && AtomQ[SplitProduct[SumBaseQ, b
]]))

Rule 1165

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(-2*d)/e, 2]}, Dist[e/(2*c*q), Int[
(q - 2*x)/Simp[d/e + q*x - x^2, x], x], x] + Dist[e/(2*c*q), Int[(q + 2*x)/Simp[d/e - q*x - x^2, x], x], x]] /
; FreeQ[{a, c, d, e}, x] && EqQ[c*d^2 - a*e^2, 0] && NegQ[d*e]

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rule 1162

Int[((d_) + (e_.)*(x_)^2)/((a_) + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[(2*d)/e, 2]}, Dist[e/(2*c), Int[1/S
imp[d/e + q*x + x^2, x], x], x] + Dist[e/(2*c), Int[1/Simp[d/e - q*x + x^2, x], x], x]] /; FreeQ[{a, c, d, e},
 x] && EqQ[c*d^2 - a*e^2, 0] && PosQ[d*e]

Rule 617

Int[((a_) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> With[{q = 1 - 4*Simplify[(a*c)/b^2]}, Dist[-2/b, Sub
st[Int[1/(q - x^2), x], x, 1 + (2*c*x)/b], x] /; RationalQ[q] && (EqQ[q^2, 1] ||  !RationalQ[b^2 - 4*a*c])] /;
 FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 204

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> -Simp[ArcTan[(Rt[-b, 2]*x)/Rt[-a, 2]]/(Rt[-a, 2]*Rt[-b, 2]), x] /
; FreeQ[{a, b}, x] && PosQ[a/b] && (LtQ[a, 0] || LtQ[b, 0])

Rubi steps

\begin{align*} \int \frac{1}{x^4 \left (1+2 x^4+x^8\right )} \, dx &=\int \frac{1}{x^4 \left (1+x^4\right )^2} \, dx\\ &=\frac{1}{4 x^3 \left (1+x^4\right )}+\frac{7}{4} \int \frac{1}{x^4 \left (1+x^4\right )} \, dx\\ &=-\frac{7}{12 x^3}+\frac{1}{4 x^3 \left (1+x^4\right )}-\frac{7}{4} \int \frac{1}{1+x^4} \, dx\\ &=-\frac{7}{12 x^3}+\frac{1}{4 x^3 \left (1+x^4\right )}-\frac{7}{8} \int \frac{1-x^2}{1+x^4} \, dx-\frac{7}{8} \int \frac{1+x^2}{1+x^4} \, dx\\ &=-\frac{7}{12 x^3}+\frac{1}{4 x^3 \left (1+x^4\right )}-\frac{7}{16} \int \frac{1}{1-\sqrt{2} x+x^2} \, dx-\frac{7}{16} \int \frac{1}{1+\sqrt{2} x+x^2} \, dx+\frac{7 \int \frac{\sqrt{2}+2 x}{-1-\sqrt{2} x-x^2} \, dx}{16 \sqrt{2}}+\frac{7 \int \frac{\sqrt{2}-2 x}{-1+\sqrt{2} x-x^2} \, dx}{16 \sqrt{2}}\\ &=-\frac{7}{12 x^3}+\frac{1}{4 x^3 \left (1+x^4\right )}+\frac{7 \log \left (1-\sqrt{2} x+x^2\right )}{16 \sqrt{2}}-\frac{7 \log \left (1+\sqrt{2} x+x^2\right )}{16 \sqrt{2}}-\frac{7 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1-\sqrt{2} x\right )}{8 \sqrt{2}}+\frac{7 \operatorname{Subst}\left (\int \frac{1}{-1-x^2} \, dx,x,1+\sqrt{2} x\right )}{8 \sqrt{2}}\\ &=-\frac{7}{12 x^3}+\frac{1}{4 x^3 \left (1+x^4\right )}+\frac{7 \tan ^{-1}\left (1-\sqrt{2} x\right )}{8 \sqrt{2}}-\frac{7 \tan ^{-1}\left (1+\sqrt{2} x\right )}{8 \sqrt{2}}+\frac{7 \log \left (1-\sqrt{2} x+x^2\right )}{16 \sqrt{2}}-\frac{7 \log \left (1+\sqrt{2} x+x^2\right )}{16 \sqrt{2}}\\ \end{align*}

Mathematica [A]  time = 0.0738577, size = 96, normalized size = 0.91 \[ \frac{1}{96} \left (-\frac{24 x}{x^4+1}-\frac{32}{x^3}+21 \sqrt{2} \log \left (x^2-\sqrt{2} x+1\right )-21 \sqrt{2} \log \left (x^2+\sqrt{2} x+1\right )+42 \sqrt{2} \tan ^{-1}\left (1-\sqrt{2} x\right )-42 \sqrt{2} \tan ^{-1}\left (\sqrt{2} x+1\right )\right ) \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x^4*(1 + 2*x^4 + x^8)),x]

[Out]

(-32/x^3 - (24*x)/(1 + x^4) + 42*Sqrt[2]*ArcTan[1 - Sqrt[2]*x] - 42*Sqrt[2]*ArcTan[1 + Sqrt[2]*x] + 21*Sqrt[2]
*Log[1 - Sqrt[2]*x + x^2] - 21*Sqrt[2]*Log[1 + Sqrt[2]*x + x^2])/96

________________________________________________________________________________________

Maple [A]  time = 0.008, size = 73, normalized size = 0.7 \begin{align*} -{\frac{1}{3\,{x}^{3}}}-{\frac{x}{4\,{x}^{4}+4}}-{\frac{7\,\arctan \left ( 1+x\sqrt{2} \right ) \sqrt{2}}{16}}-{\frac{7\,\arctan \left ( -1+x\sqrt{2} \right ) \sqrt{2}}{16}}-{\frac{7\,\sqrt{2}}{32}\ln \left ({\frac{1+{x}^{2}+x\sqrt{2}}{1+{x}^{2}-x\sqrt{2}}} \right ) } \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^4/(x^8+2*x^4+1),x)

[Out]

-1/3/x^3-1/4*x/(x^4+1)-7/16*arctan(1+x*2^(1/2))*2^(1/2)-7/16*arctan(-1+x*2^(1/2))*2^(1/2)-7/32*2^(1/2)*ln((1+x
^2+x*2^(1/2))/(1+x^2-x*2^(1/2)))

________________________________________________________________________________________

Maxima [A]  time = 1.49873, size = 122, normalized size = 1.15 \begin{align*} -\frac{7}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) - \frac{7}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) - \frac{7}{32} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) + \frac{7}{32} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) - \frac{7 \, x^{4} + 4}{12 \,{\left (x^{7} + x^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(x^8+2*x^4+1),x, algorithm="maxima")

[Out]

-7/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) - 7/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) - 7/32*sq
rt(2)*log(x^2 + sqrt(2)*x + 1) + 7/32*sqrt(2)*log(x^2 - sqrt(2)*x + 1) - 1/12*(7*x^4 + 4)/(x^7 + x^3)

________________________________________________________________________________________

Fricas [A]  time = 1.52469, size = 406, normalized size = 3.83 \begin{align*} -\frac{56 \, x^{4} - 84 \, \sqrt{2}{\left (x^{7} + x^{3}\right )} \arctan \left (-\sqrt{2} x + \sqrt{2} \sqrt{x^{2} + \sqrt{2} x + 1} - 1\right ) - 84 \, \sqrt{2}{\left (x^{7} + x^{3}\right )} \arctan \left (-\sqrt{2} x + \sqrt{2} \sqrt{x^{2} - \sqrt{2} x + 1} + 1\right ) + 21 \, \sqrt{2}{\left (x^{7} + x^{3}\right )} \log \left (x^{2} + \sqrt{2} x + 1\right ) - 21 \, \sqrt{2}{\left (x^{7} + x^{3}\right )} \log \left (x^{2} - \sqrt{2} x + 1\right ) + 32}{96 \,{\left (x^{7} + x^{3}\right )}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(x^8+2*x^4+1),x, algorithm="fricas")

[Out]

-1/96*(56*x^4 - 84*sqrt(2)*(x^7 + x^3)*arctan(-sqrt(2)*x + sqrt(2)*sqrt(x^2 + sqrt(2)*x + 1) - 1) - 84*sqrt(2)
*(x^7 + x^3)*arctan(-sqrt(2)*x + sqrt(2)*sqrt(x^2 - sqrt(2)*x + 1) + 1) + 21*sqrt(2)*(x^7 + x^3)*log(x^2 + sqr
t(2)*x + 1) - 21*sqrt(2)*(x^7 + x^3)*log(x^2 - sqrt(2)*x + 1) + 32)/(x^7 + x^3)

________________________________________________________________________________________

Sympy [A]  time = 0.219176, size = 97, normalized size = 0.92 \begin{align*} - \frac{7 x^{4} + 4}{12 x^{7} + 12 x^{3}} + \frac{7 \sqrt{2} \log{\left (x^{2} - \sqrt{2} x + 1 \right )}}{32} - \frac{7 \sqrt{2} \log{\left (x^{2} + \sqrt{2} x + 1 \right )}}{32} - \frac{7 \sqrt{2} \operatorname{atan}{\left (\sqrt{2} x - 1 \right )}}{16} - \frac{7 \sqrt{2} \operatorname{atan}{\left (\sqrt{2} x + 1 \right )}}{16} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**4/(x**8+2*x**4+1),x)

[Out]

-(7*x**4 + 4)/(12*x**7 + 12*x**3) + 7*sqrt(2)*log(x**2 - sqrt(2)*x + 1)/32 - 7*sqrt(2)*log(x**2 + sqrt(2)*x +
1)/32 - 7*sqrt(2)*atan(sqrt(2)*x - 1)/16 - 7*sqrt(2)*atan(sqrt(2)*x + 1)/16

________________________________________________________________________________________

Giac [A]  time = 1.12046, size = 117, normalized size = 1.1 \begin{align*} -\frac{7}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x + \sqrt{2}\right )}\right ) - \frac{7}{16} \, \sqrt{2} \arctan \left (\frac{1}{2} \, \sqrt{2}{\left (2 \, x - \sqrt{2}\right )}\right ) - \frac{7}{32} \, \sqrt{2} \log \left (x^{2} + \sqrt{2} x + 1\right ) + \frac{7}{32} \, \sqrt{2} \log \left (x^{2} - \sqrt{2} x + 1\right ) - \frac{x}{4 \,{\left (x^{4} + 1\right )}} - \frac{1}{3 \, x^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^4/(x^8+2*x^4+1),x, algorithm="giac")

[Out]

-7/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x + sqrt(2))) - 7/16*sqrt(2)*arctan(1/2*sqrt(2)*(2*x - sqrt(2))) - 7/32*sq
rt(2)*log(x^2 + sqrt(2)*x + 1) + 7/32*sqrt(2)*log(x^2 - sqrt(2)*x + 1) - 1/4*x/(x^4 + 1) - 1/3/x^3